

Initial Screening of Alternatives

Signal Hill Water Treatment Plant Optimization

Advisory Control Board Meeting | Thursday September 19, 2024

- Introduction and Background
- Discussion of Big-Picture Alternatives
- Shortlisted Alternatives
- Summary
- Wrap up and Next Steps

Introduction and Background

Conceptual Design Workflow

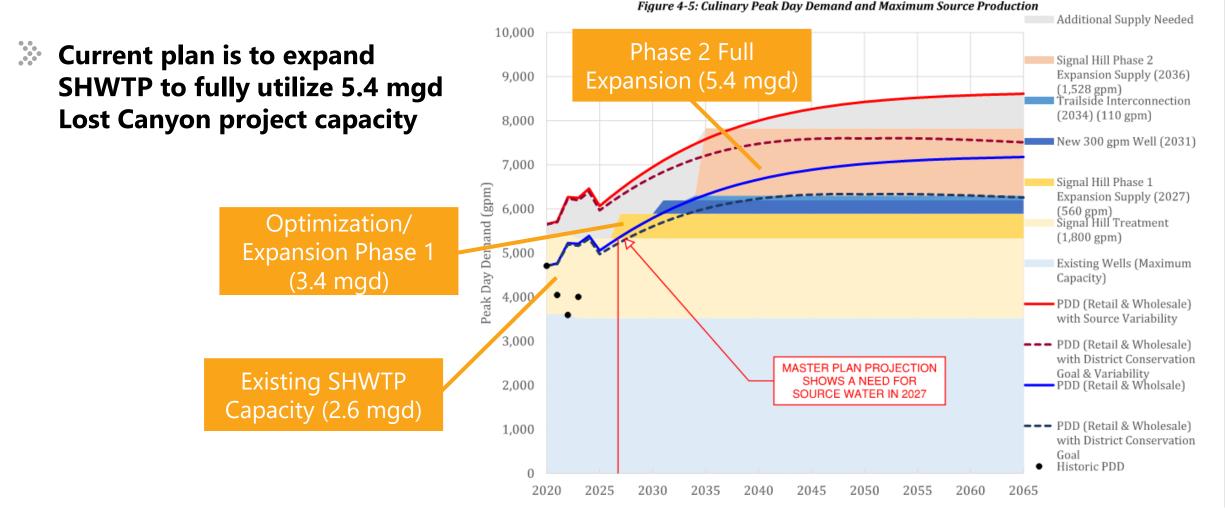
List of Alternatives

Screening Workshop

> Develop 2-3 shortlisted alternatives

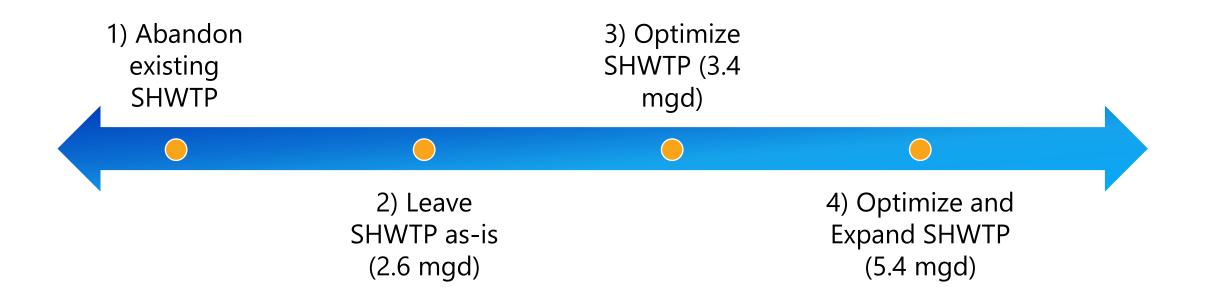
Today's Meeting

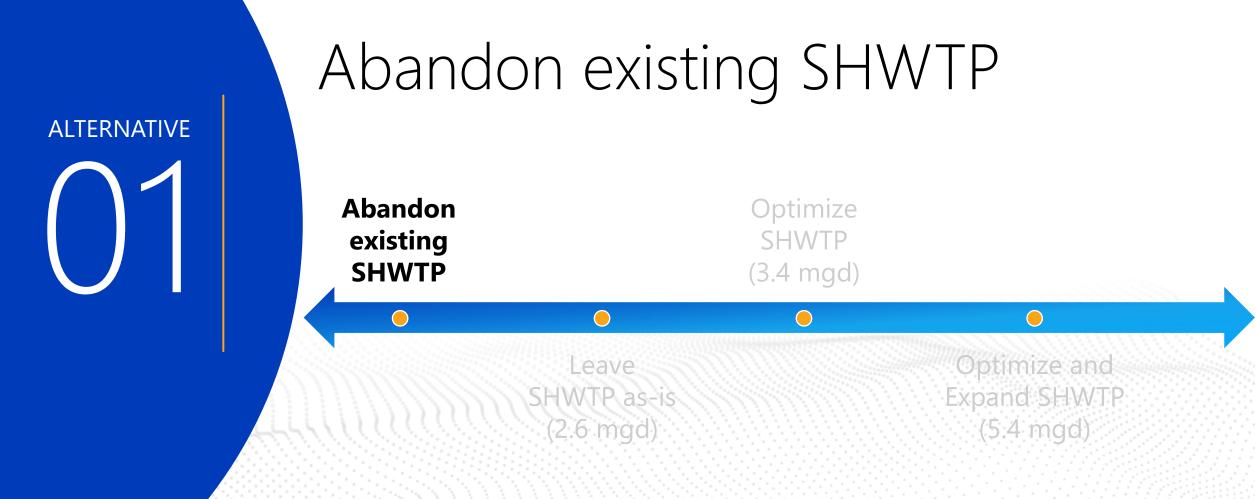
- Discuss list of alternatives for future of SHWTP and use of Lost Canyon water
- Discuss how we screened alternatives to a shortlist for further evaluation


The initial screening has the following caveats:

- Not based on in-depth analysis, detailed capital/O&M costs, etc.
- Rather, based on big-picture criteria, must-haves, pros/cons.
- Using Jacobs' previous costs as an anchor point and adding order-of-magnitude costs where needed.
- Does not include in-depth screening of individual process decisions (e.g., send residuals to SBWRD vs. mechanical dewatering).

Establish big-picture criteria for the initial screening


- Meet increased demand
- Fully utilize Lost Canyon water
- Meet water quality objectives
- Increase safety
- Improve operations & maintenance
- Provide reliability/redundancy
- Future resilience (e.g., regulatory changes, wildfire, etc.)
- Capital and O&M costs


MRW system demands are projected to increase

CAROLLO / 8

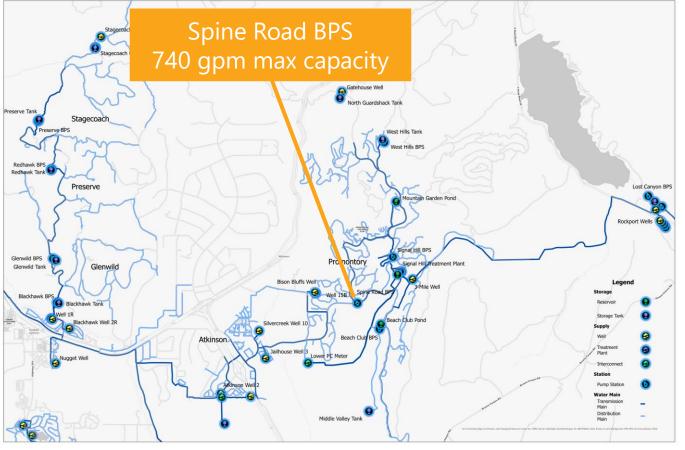
There is a range of big-picture alternatives

1a) Purchase wholesale water (5.4 mgd)

Pros

- Avoid capital investment in SHWTP

- Stranded SHWTP assets
- Capital investment to convey finished water from PCMC to MRW
- Ongoing water fees paid to PCMC
- Lose control over rate increases
- Lose control over treatment operations
- Existing legal framework
- Trigger importation project earlier than otherwise
- Reassign treatment staff


1a) Purchase wholesale water (5.4 mgd)

Pros

- Avoid capital investment in SHWTP

Cons

- Stranded SHWTP assets
- Capital investment to convey finished water from PCMC to MRW
- Ongoing water fees paid to PCMC
- Lose control over rate increases
- Lose control over treatment operations
- Existing legal framework
- Trigger importation project earlier than otherwise
- Reassign treatment staff

C A R O L L O / **1 2**

1a) Purchase wholesale water (5.4 mgd)

Pros

- Avoid capital investment in SHWTP

Cons

- Stranded SHWTP assets
- Capital investment to convey finished water from PCMC to MRW
- Ongoing water fees paid to PCMC
- Lose control over rate increases
- Lose control over treatment operations
- Existing legal framework
- Trigger importation project earlier than otherwise
- Reassign treatment staff

	Table 5-1. Expansion vs. Interconnect, Life Cycle Cost Comparisons					
		Park City Interconnect + 3.4 mgd SHWTP	SHWTP Expansion to 5.4 mgd			
-2	Capital Costs					
Pres	Resiliency and Redundancy Project	\$21,982,000	\$21,982,000			
	SHWTP Expansion to 5.4 mgd Project	\$0	\$5,676,000			
	Park City Interconnect Project	\$1,878,000	\$0			
R	Annual O&M Costs and Water Fees					
	Annual Average SHWTP Production, mgd	2.6	2.7			
	Annual SHWTP Operational Cost	\$620,000	\$623,000			
	Annual Average Interconnect Flow, gpm	399	0			
	Annual Park City Interconnect Water Fees	\$2,477,000	\$0			
G	25-year Net Present Value®	\$47,058,000	\$32,325,000			

Net Present Value is based on the construction cost plus a discount rate of 5.0% for a 25-year period for O&M cost.

C A R O L L O / **1 3**

1a) Purchase wholesale water (5.4 mgd)

Pros

- Avoid capital investment in SHWTP

Cons

- Stranded SHWTP assets
- Capital investment to convey finished water from PCMC to MRW
- Ongoing water fees paid to PCMC
- Lose control over rate increases
- Lose control over treatment operations
- Existing legal framework
- Trigger importation project earli Would be higher for full 5.4 mgd than otherwise
- Reassign treatment staff

	Park City Interconnect + 3.4 mgd SHWTP	SHWTP Expansion to 5.4 mgd
Capital Costs		
Resiliency and Redundancy Project	\$21,982,000	\$21,982,000
SHWTP Expansion to 5.4 mgd Project	\$0	\$5,676,000
Park City Interconnect Project	\$1,878,000	\$0
Annual O&M Costs and Water Fees		•
Annual Average SHWTP Production, mgd	2.6	2.7
Annual SHWTP Operational Cost	\$620,000	\$623,000
Annual Average Interconnect Flow, gpm	399	0
Annual Park City Interconnect Water Fees	\$2,477,000	\$0
25-year Net Present Value®	\$47,058,000	\$32,325,000

- \$2.5M annual water fees for 2.0 mgd capacity (not production)

capacity

1a) Purchase wholesale water (5.4 mgd)

Pros

- Avoid capital investment in SHWTP

Cons

- Stranded SHWTP assets
- Capital investment to convey finished water from PCMC to MRW
- Ongoing water fees paid to PCMC
- Lose control over rate increases
- Lose control over treatment operations
- Existing legal framework
- Trigger importation project earli Would be higher for full 5.4 mgd than otherwise
- Reassign treatment staff

	Park City Interconnect + 3.4 mgd SHWTP	SHWTP Expansion to 5.4 mgd		
Capital Costs				
Resiliency and Redundancy Project	\$21,982,000	\$21,982,000		
SHWTP Expansion to 5.4 mgd Project	\$0	\$5,676,000		
Park City Interconnect Project	\$1,878,000	\$0		
Annual O&M Costs and Water Fees				
Annual Average SHWTP Production, mgd	2.6	2.7		
Annual SHWTP Operational Cost	\$620,000	\$623,000		
Annual Average Interconnect Flow, gpm	399	0		
Annual Park City Interconnect Water Fees	\$2,477,000	\$0		
25-year Net Present Value ^a	\$47,058,000	\$32,325,000		

- \$2.5M annual water fees for 2.0 mgd capacity (not production)

capacity

1b) Rebuild at another location(5.4 mgd)

Pros

- Start from scratch, can build wellconfigured treatment facility resilient to future changes (e.g., wildfire)
- Can keep existing plant online during construction

Cons

- High capital cost for new WTP
- Capital costs to convey raw water to new site and convey finished water back to Signal Hill site where system needs it.
- Signal Hill stranded assets

- Does not include conveyance costs

oale Earth

 1c) Demo and rebuild at the Promontory location in <u>existing</u> footprint

Pros

- Start from scratch, can build robust treatment facility resilient to future changes (e.g., wildfire)
- No need to reconfigure raw water conveyance.

- High capital cost for new WTP
- Capital investment to convey finished water from PCMC to MRW during construction

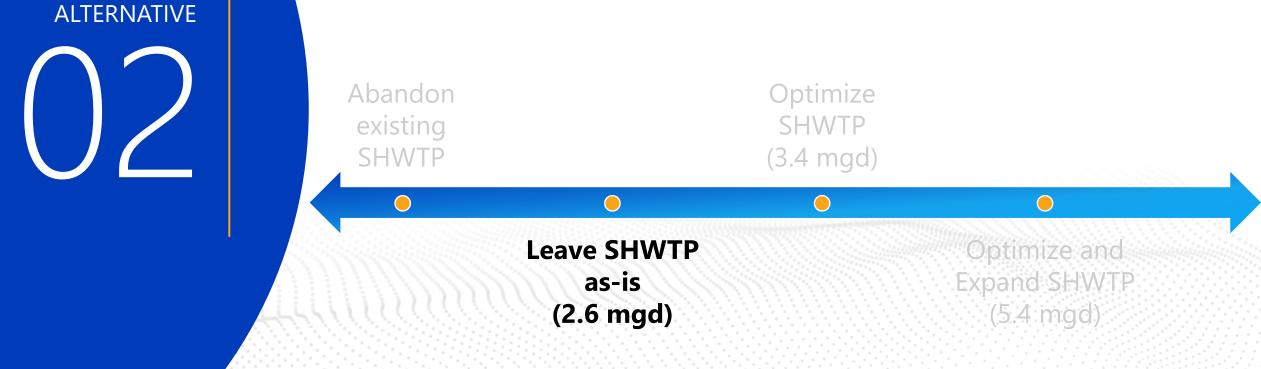
 Ic) Demo and rebuild at the Promontory location in <u>pond</u> footprint

Pros

- Start from scratch, can build robust treatment facility resilient to future changes (regulator and/or wildfire)
- Build new WTP while existing remains online.
- No need to reconfigure raw water or finished water conveyance.

- High capital cost for new WTP
- High capital cost to reconfigure Signal Hill pond.

3 1d) Build new on an "Adjacent" Property


Pros

- Start from scratch, can build robust treatment facility resilient to future changes (regulator and/or wildfire)
- Build new WTP while existing remains online.
- Only small reconfiguration of raw water and finished water conveyance.

- High capital cost for new WTP
- High to purchase new property.

Leave SHWTP as-is

2) Leave SHWTP as-is (2.6 mgd) and...

2a) Purchase wholesale water (2.8 mgd) and no capital investment

Pros

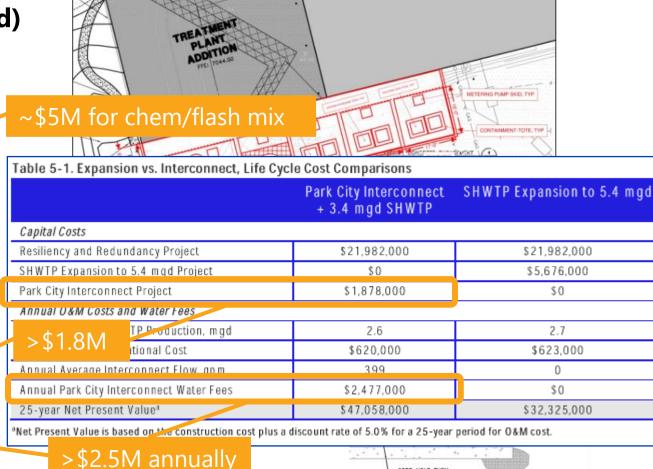
- No capital investment in SHWTP

Cons

- Does not address safety, operations, and maintenance concerns of the existing SHWTP
- Capital costs to convey finished water from PCMC to MRW system
- Ongoing PCMC water fees
- Still needs investment (e.g., membrane replacements, GAC replacements, etc.
- Existing legal framework
- Trigger importation project earlier than otherwise

This feels like a non-starter

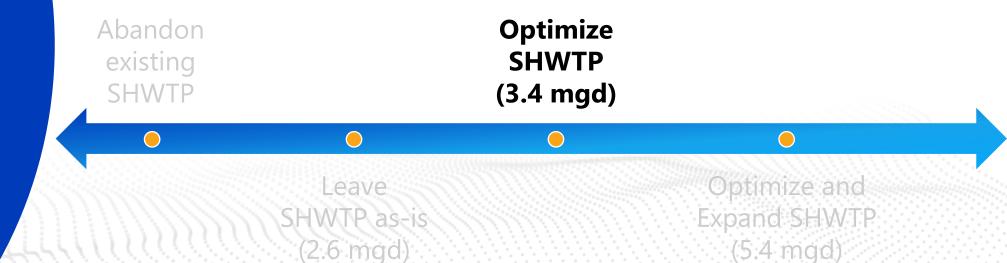
2) Leave SHWTP (2.6 mgd) as-is and...


2b) Purchase wholesale water (2.8 mgd) and minimal investment in SHWTP

Pros

- Minimizing investment in SHWTP
- Address essentials, e.g., chemical bldg., flash mix

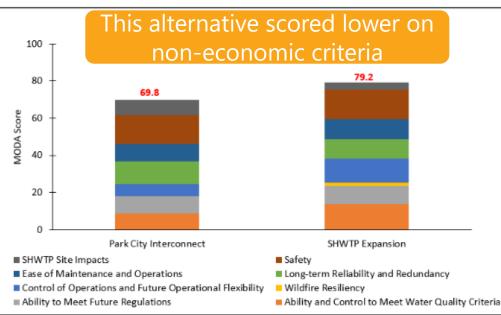
Cons


- Does not address all safety, operations, and maintenance concerns of the existing SHWTP
- Capital costs to convey finished water, from PCMC to MRW system
- PCMC water fees -
- Still needs investment (e.g., replace membranes periodically, GAC replacements, etc.)

CORE HOLE THRU WALL FOR 4" DIP

Optimize SHWTP at current capacity

ALTERNATIVE

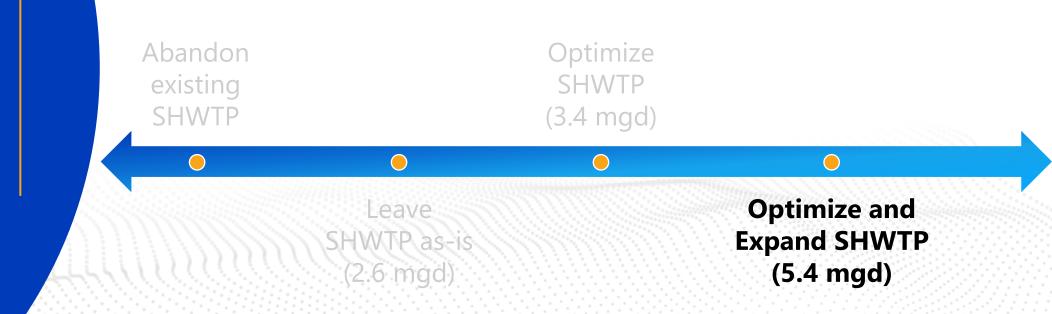


3) Optimize SHWTP at 3.4 mgd capacity and...

Purchase wholesale water (2.0 mgd)

Figure 5-4. Comparison of Non-Cost Scores for the Alternatives

Jacobs already did this analysis, comparing this to full 5.4 mgd expansion


Table 5-1. Expansion vs. Interconnect, Life Cycle Cost Comparisons

	Park City Interconnect + 3.4 mgd SHWTP	SHWTP Expansion to 5.4 mgd
Capital Costs		
Resiliency and Redundancy Project	\$21,982,000	\$21,982,000
SHWTP Expansion to 5.4 mgd Project	\$0	\$5,676,000
Park City Interconnect Project	\$1,878,000	\$0
Annual O&M Costs and Water Fees	-	
Annual Average SHWTP Production, mgd	2.6	2.7
Annual SHWTP Operational Cost	\$620,000	\$623,000
Annual Average Interconnect Flow, gpm	399	0
Annual Park City Interconnect Water Fees	\$2,477,000	\$0
25-year Net Present Valueª	\$47,058,000	\$32,325,000

^aNet Present Value is based on the construction cost plus a discount rate of 5.0% for a 25-year period for O&M cost.

This alternative had a higher 25-year NPV

ALTERNATIVE

Fully optimize and expand SHWTP to 5.4 mgd

• 4a) In a phased approach vs. 4b) In a single project

Sewer Connection with SBWRD

Jacobs phase	ed approach:
nase 1 (2.6 mgd -> 3.4 mgd)	Phase 2 (3.4 mgd -> 5.4 mgd)
Pretreatment - Reclaim 2 nd floc/sed train - Install mechanical mixers Membrane Filtration - Add 1 Pall AP-8 skid GAC - New building addition - Add 2 GAC vessels Chemicals - New chemical facility Residuals Handling - GAC backwash EQ basin - Gravity Thickener	 Membrane Filtration Add 1 Pall AP-8 skid GAC Add 2 GAC vessels

3 4a) In a phased approach

Pros

- Rate increases can be smoothed out over time.
- Addresses safety, O&M, etc.
- Fully utilizes Lost Canyon water.

Cons

- Less efficient (two designs, two contractors, two mobilizations, etc.).
- Higher net present value compared to single project.
- Less redundancy in supply
- Is there really time to wait?

Phase 1: Optimize and expand to firm 3.4 mgd

> Phase 2: Expand to 5.4mgd

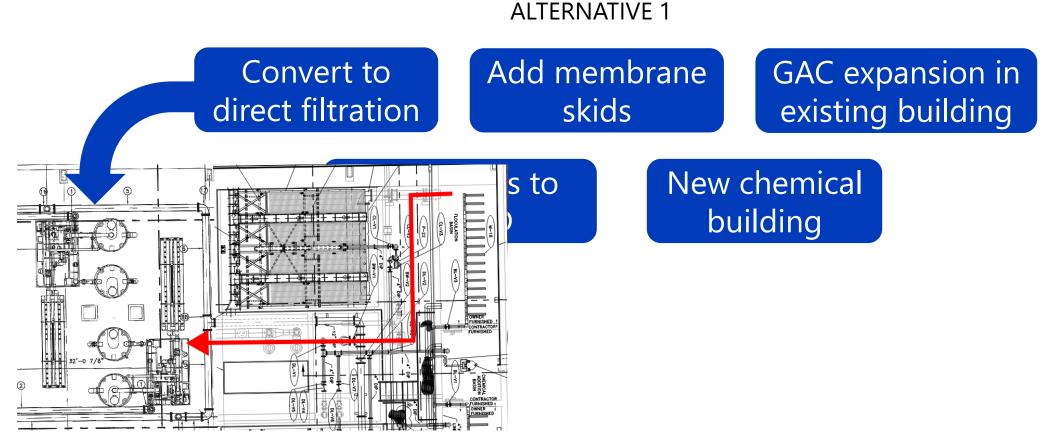
3 4b) In a single project

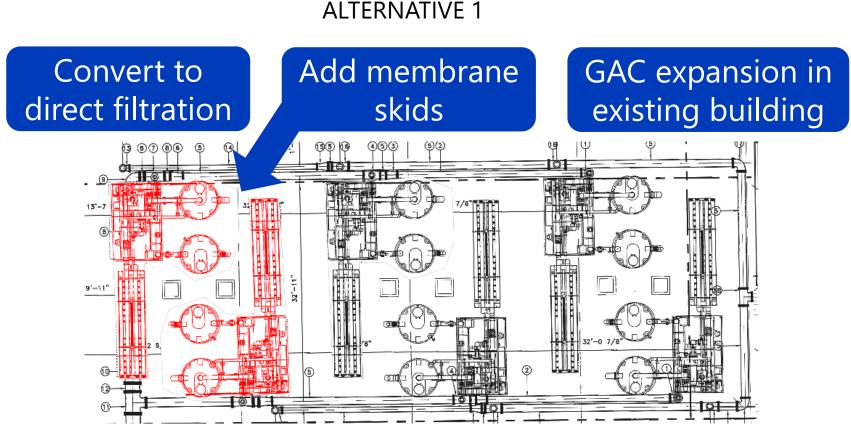
Pros

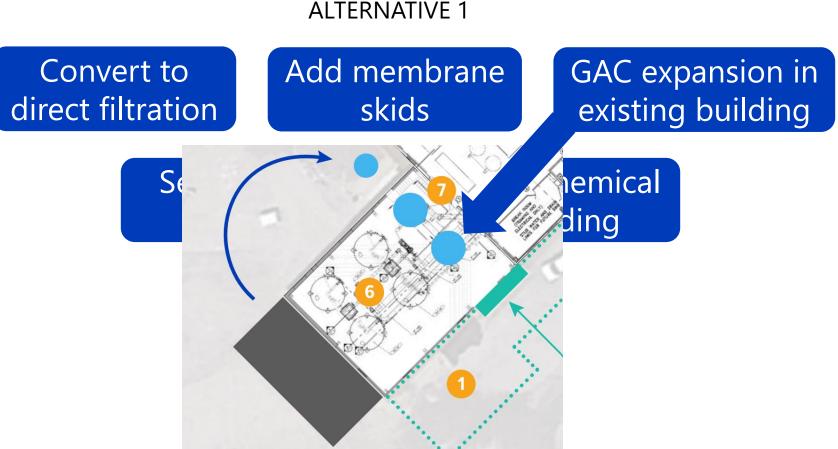
- One design, one contractor.
- Lowest net present value of all alternatives

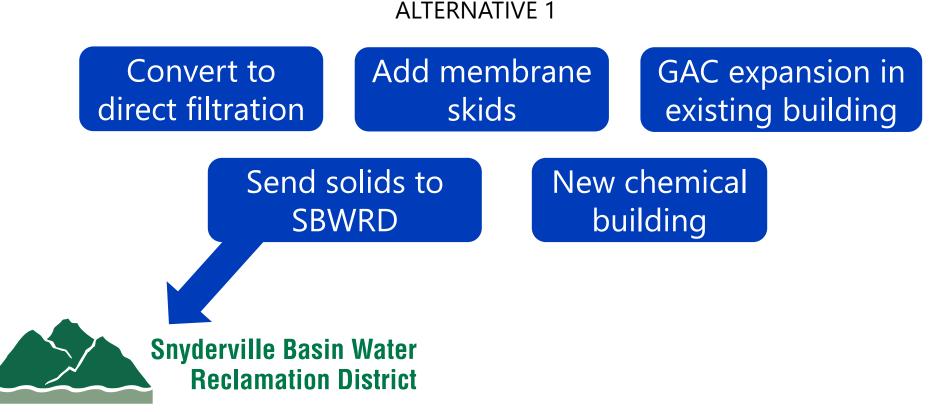
Cons

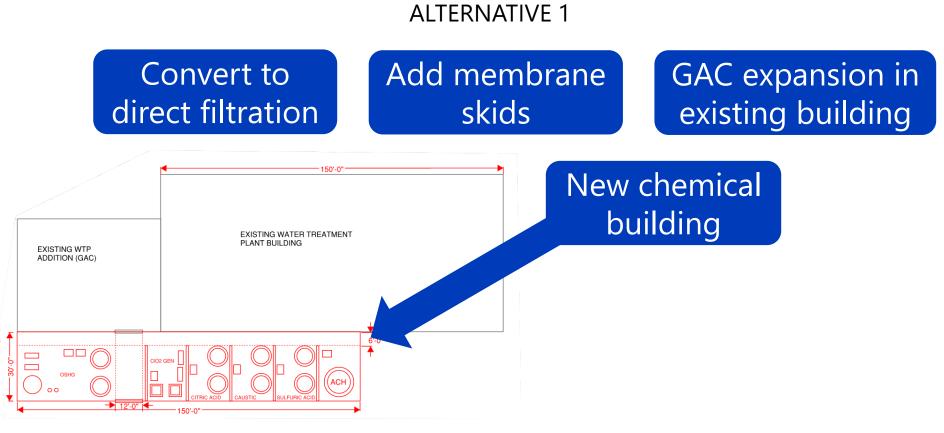
- Largest near-term capital investment.

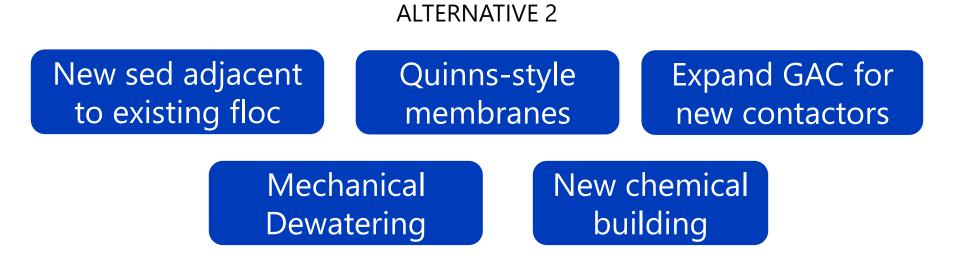

One Project to Rule Them All


Shortlisted Alternatives

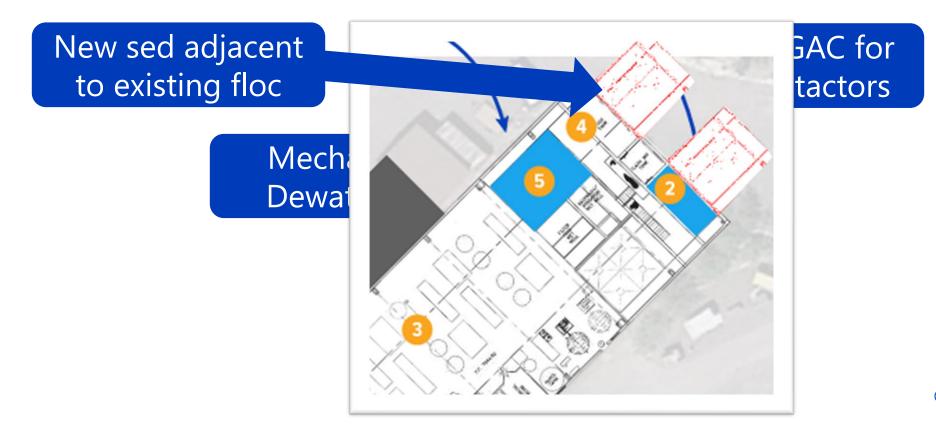


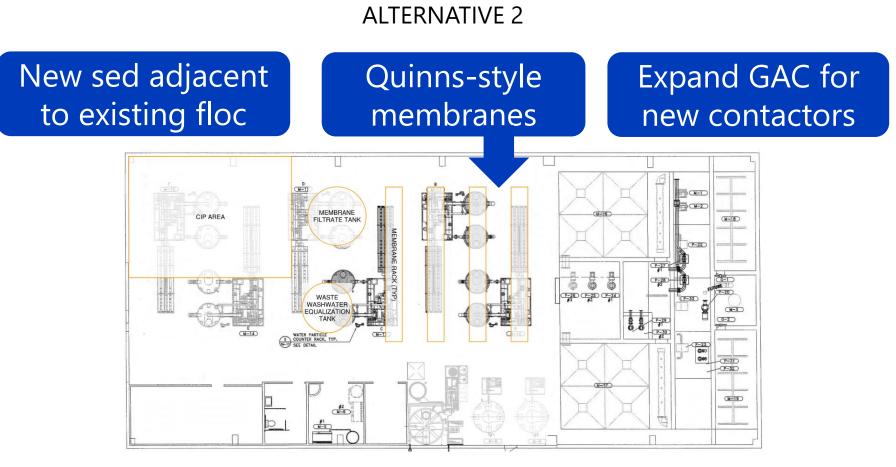


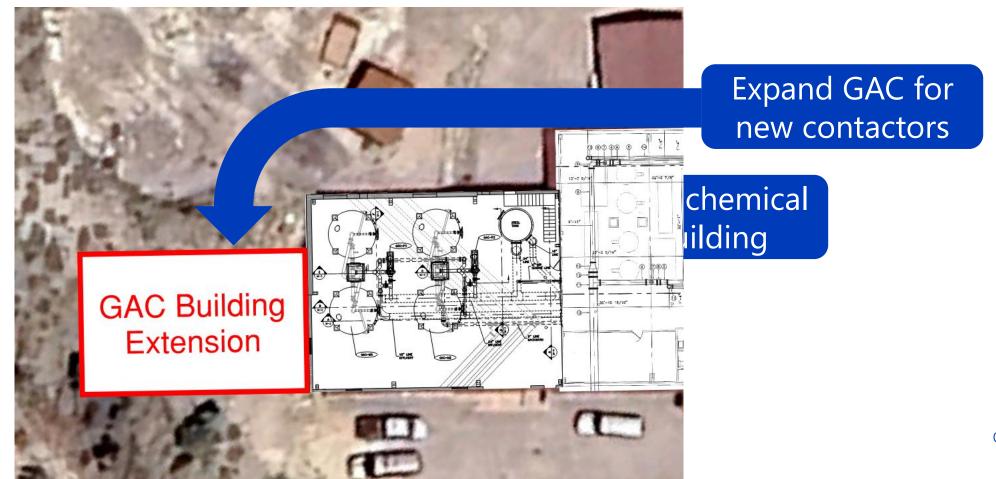

Fully optimize and expand SHWTP to 5.4 mgd (whether phased or in one project)



CAROLLO / 32

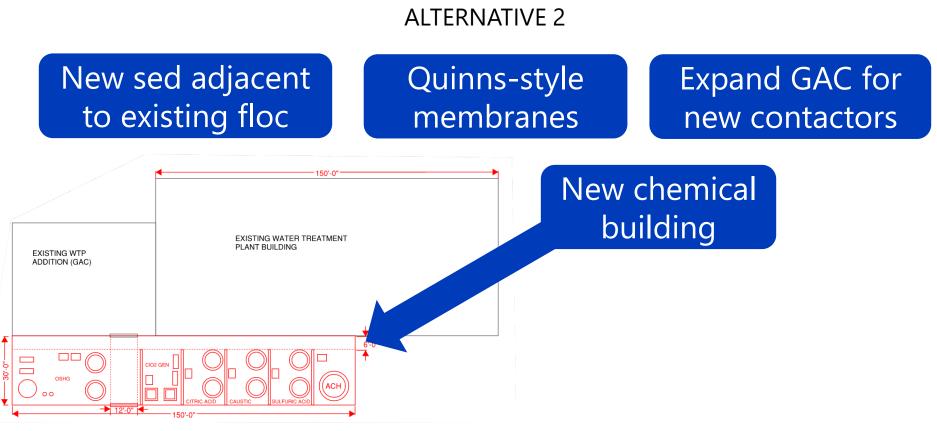






Fully optimize and expand SHWTP to 5.4 mgd (whether phased or in one project)

ALTERNATIVE 2



Fully optimize and expand SHWTP to 5.4 mgd (whether phased or in one project)

ALTERNATIVE 2

New sed adjacent to existing floc

40

Summary

Summary of alternatives

Alternative	Key Pros	Key Cons	Capital Costs	O&M Costs
Abandon SHWTP	+ Avoid capital investment in SHWTP	 Lose control (if purchase from PCMC) High capital (if rebuild) Stranded SHWTP assets and reassign staff Trigger importation project earlier 	Very High	High
Leave SHWTP as-is (2.6 mgd)	+ Minimize capital investment in SHWTP	 Does not address key objectives (e.g., safety) Infrastructure capital costs 	Low	Medium
Optimize SHWTP only (3.4 mgd)		- High NPV - Lower non-economic benefit per Jacobs' analysis	Medium	Medium
Optimize and Expand SHWTP (5.4 mgd)	+ Stay in control + Meet key objectives + Lowest NPV	- Large near-term capital	High	Low

Wrap up and Next Steps

Next Steps

- Develop shortlisted alternatives
- Finish bench testing and begin full-scale testing